std::numeric_limits
Defined in header <limits>
|
||
template< class T > class numeric_limits; |
||
The numeric_limits
class template provides a standardized way to query various properties of arithmetic types (e.g. the largest possible value for type int is std::numeric_limits<int>::max()).
This information is provided via specializations of the numeric_limits
template. The standard library makes available specializations for all arithmetic types:
Defined in header <limits>
|
||
template<> class numeric_limits<bool>; template<> class numeric_limits<char>; |
||
Additionally, a specialization exists for every cv-qualified version of each arithmetic type, identical to the unqualified specialization, e.g. std::numeric_limits<const int>
, std::numeric_limits<volatile int>
, and std::numeric_limits<const volatile int>
are provided and are equivalent to std::numeric_limits<int>
.
The standard library types that are aliases of arithmetic types (such as std::size_t or std::streamsize) may also be examined with the std::numeric_limits type traits.
Non-arithmetic standard types, such as std::complex<T> or std::nullptr_t, do not have specializations.
Implementations may provide specializations of std::numeric_limits for implementation-specific types: e.g. GCC provides std::numeric_limits<__int128>. Non-standard libraries may add specializations for library-provided types, e.g. OpenEXR provides std::numeric_limits<half> for a 16-bit floating-point type.
Template parameters
T | - | a type to retrieve numeric properties for |
Member constants
[static] |
identifies types for which std::numeric_limits is specialized (public static member constant) |
[static] |
identifies signed types (public static member constant) |
[static] |
identifies integer types (public static member constant) |
[static] |
identifies exact types (public static member constant) |
[static] |
identifies floating-point types that can represent the special value "positive infinity" (public static member constant) |
[static] |
identifies floating-point types that can represent the special value "quiet not-a-number" (NaN) (public static member constant) |
[static] |
identifies floating-point types that can represent the special value "signaling not-a-number" (NaN) (public static member constant) |
[static] |
identifies the denormalization style used by the floating-point type (public static member constant) |
[static] |
identifies the floating-point types that detect loss of precision as denormalization loss rather than inexact result (public static member constant) |
[static] |
identifies the rounding style used by the type (public static member constant) |
[static] |
identifies the IEC 559/IEEE 754 floating-point types (public static member constant) |
[static] |
identifies types that represent a finite set of values (public static member constant) |
[static] |
identifies types that handle overflows with modulo arithmetic (public static member constant) |
[static] |
number of radix digits that can be represented without change (public static member constant) |
[static] |
number of decimal digits that can be represented without change (public static member constant) |
[static] (C++11) |
number of decimal digits necessary to differentiate all values of this type (public static member constant) |
[static] |
the radix or integer base used by the representation of the given type (public static member constant) |
[static] |
one more than the smallest negative power of the radix that is a valid normalized floating-point value (public static member constant) |
[static] |
the smallest negative power of ten that is a valid normalized floating-point value (public static member constant) |
[static] |
one more than the largest integer power of the radix that is a valid finite floating-point value (public static member constant) |
[static] |
the largest integer power of 10 that is a valid finite floating-point value (public static member constant) |
[static] |
identifies types which can cause arithmetic operations to trap (public static member constant) |
[static] |
identifies floating-point types that detect tinyness before rounding (public static member constant) |
Member functions
[static] |
returns the smallest finite value of the given type (public static member function) |
[static] (C++11) |
returns the lowest finite value of the given type (public static member function) |
[static] |
returns the largest finite value of the given type (public static member function) |
[static] |
returns the difference between 1.0 and the next representable value of the given floating-point type (public static member function) |
[static] |
returns the maximum rounding error of the given floating-point type (public static member function) |
[static] |
returns the positive infinity value of the given floating-point type (public static member function) |
[static] |
returns a quiet NaN value of the given floating-point type (public static member function) |
[static] |
returns a signaling NaN value of the given floating-point type (public static member function) |
[static] |
returns the smallest positive subnormal value of the given floating-point type (public static member function) |
Helper classes
indicates floating-point rounding modes (enum) | |
indicates floating-point denormalization modes (enum) |
Relationship with C library macro constants
Specialization | Members | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
min()
|
lowest() (C++11) |
max()
|
epsilon()
|
digits
|
digits10
|
min_exponent
|
min_exponent10
|
max_exponent
|
max_exponent10
|
radix
| |
numeric_limits< bool >
|
2 | ||||||||||
numeric_limits< char >
|
CHAR_MIN | CHAR_MIN | CHAR_MAX | 2 | |||||||
numeric_limits< signed char >
|
SCHAR_MIN | SCHAR_MIN | SCHAR_MAX | 2 | |||||||
numeric_limits< unsigned char >
|
0 | 0 | UCHAR_MAX | 2 | |||||||
numeric_limits< wchar_t >
|
WCHAR_MIN | WCHAR_MIN | WCHAR_MAX | 2 | |||||||
numeric_limits< char8_t >
|
0 | 0 | UCHAR_MAX | 2 | |||||||
numeric_limits< char16_t >
|
0 | 0 | UINT_LEAST16_MAX | 2 | |||||||
numeric_limits< char32_t >
|
0 | 0 | UINT_LEAST32_MAX | 2 | |||||||
numeric_limits< short >
|
SHRT_MIN | SHRT_MIN | SHRT_MAX | 2 | |||||||
numeric_limits< signed short >
|
|||||||||||
numeric_limits< unsigned short >
|
0 | 0 | USHRT_MAX | 2 | |||||||
numeric_limits< int >
|
INT_MIN | INT_MIN | INT_MAX | 2 | |||||||
numeric_limits< signed int >
|
|||||||||||
numeric_limits< unsigned int >
|
0 | 0 | UINT_MAX | 2 | |||||||
numeric_limits< long >
|
LONG_MIN | LONG_MIN | LONG_MAX | 2 | |||||||
numeric_limits< signed long >
|
|||||||||||
numeric_limits< unsigned long >
|
0 | 0 | ULONG_MAX | 2 | |||||||
numeric_limits< long long >
|
LLONG_MIN | LLONG_MIN | LLONG_MAX | 2 | |||||||
numeric_limits< signed long long >
|
|||||||||||
numeric_limits< unsigned long long >
|
0 | 0 | ULLONG_MAX | 2 | |||||||
numeric_limits< float >
|
FLT_MIN | -FLT_MAX | FLT_MAX | FLT_EPSILON | FLT_MANT_DIG | FLT_DIG | FLT_MIN_EXP | FLT_MIN_10_EXP | FLT_MAX_EXP | FLT_MAX_10_EXP | FLT_RADIX |
numeric_limits< double >
|
DBL_MIN | -DBL_MAX | DBL_MAX | DBL_EPSILON | DBL_MANT_DIG | DBL_DIG | DBL_MIN_EXP | DBL_MIN_10_EXP | DBL_MAX_EXP | DBL_MAX_10_EXP | FLT_RADIX |
numeric_limits< long double >
|
LDBL_MIN | -LDBL_MAX | LDBL_MAX | LDBL_EPSILON | LDBL_MANT_DIG | LDBL_DIG | LDBL_MIN_EXP | LDBL_MIN_10_EXP | LDBL_MAX_EXP | LDBL_MAX_10_EXP | FLT_RADIX |
Example
#include <limits> #include <iostream> int main() { std::cout << "type\tlowest()\tmin()\t\tmax()\n\n"; std::cout << "uchar\t" << +std::numeric_limits<unsigned char>::lowest() << '\t' << '\t' << +std::numeric_limits<unsigned char>::min() << '\t' << '\t' << +std::numeric_limits<unsigned char>::max() << '\n'; std::cout << "int\t" << std::numeric_limits<int>::lowest() << '\t' << std::numeric_limits<int>::min() << '\t' << std::numeric_limits<int>::max() << '\n'; std::cout << "float\t" << std::numeric_limits<float>::lowest() << '\t' << std::numeric_limits<float>::min() << '\t' << std::numeric_limits<float>::max() << '\n'; std::cout << "double\t" << std::numeric_limits<double>::lowest() << '\t' << std::numeric_limits<double>::min() << '\t' << std::numeric_limits<double>::max() << '\n'; }
Possible output:
type lowest() min() max() uchar 0 0 255 int -2147483648 -2147483648 2147483647 float -3.40282e+38 1.17549e-38 3.40282e+38 double -1.79769e+308 2.22507e-308 1.79769e+308