std::scalbn, std::scalbnf, std::scalbnl, std::scalbln, std::scalblnf, std::scalblnl
Defined in header <cmath>
|
||
float scalbn ( float x, int exp ); float scalbnf( float x, int exp ); |
(1) | (since C++11) |
double scalbn ( double x, int exp ); |
(2) | (since C++11) |
long double scalbn ( long double x, int exp ); long double scalbnl( long double x, int exp ); |
(3) | (since C++11) |
double scalbn ( IntegralType x, int exp ); |
(4) | (since C++11) |
float scalbln ( float x, long exp ); float scalblnf( float x, long exp ); |
(5) | (since C++11) |
double scalbln ( double x, long exp ); |
(6) | (since C++11) |
long double scalbln ( long double x, long exp ); long double scalblnl( long double x, long exp ); |
(7) | (since C++11) |
double scalbln ( IntegralType x, long exp ); |
(8) | (since C++11) |
Parameters
x | - | floating point value |
exp | - | integer value |
Return value
If no errors occur, x
multiplied by FLT_RADIX to the power of arg
(x×FLT_RADIXexp
) is returned.
If a range error due to overflow occurs, ±HUGE_VAL
, ±HUGE_VALF
, or ±HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- Unless a range error occurs, FE_INEXACT is never raised (the result is exact)
- Unless a range error occurs, the current rounding mode is ignored
- If
x
is ±0, it is returned, unmodified - If
x
is ±∞, it is returned, unmodified - If
exp
is 0, thenx
is returned, unmodified - If
x
is NaN, NaN is returned
Notes
On binary systems (where FLT_RADIX is 2
), std::scalbn
is equivalent to std::ldexp.
Although std::scalbn
and std::scalbln
are specified to perform the operation efficiently, on many implementations they are less efficient than multiplication or division by a power of two using arithmetic operators.
The function name stands for "new scalb", where scalb
was an older non-standard function whose second argument had floating-point type.
The scalbln
function is provided because the factor required to scale from the smallest positive floating-point value to the largest finite one may be greater than 32767, the standard-guaranteed INT_MAX. In particular, for the 80-bit long double
, the factor is 32828.
The GNU implementation does not set errno
regardless of math_errhandling
Example
#include <iostream> #include <cmath> #include <cerrno> #include <cstring> #include <cfenv> #pragma STDC FENV_ACCESS ON int main() { std::cout << "scalbn(7, -4) = " << std::scalbn(7, -4) << '\n' << "scalbn(1, -1074) = " << std::scalbn(1, -1074) << " (minimum positive subnormal double)\n" << "scalbn(nextafter(1,0), 1024) = " << std::scalbn(std::nextafter(1,0), 1024) << " (largest finite double)\n"; // special values std::cout << "scalbn(-0, 10) = " << std::scalbn(-0.0, 10) << '\n' << "scalbn(-Inf, -1) = " << std::scalbn(-INFINITY, -1) << '\n'; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "scalbn(1, 1024) = " << std::scalbn(1, 1024) << '\n'; if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }
Possible output:
scalbn(7, -4) = 0.4375 scalbn(1, -1074) = 4.94066e-324 (minimum positive subnormal double) scalbn(nextafter(1,0), 1024) = 1.79769e+308 (largest finite double) scalbn(-0, 10) = -0 scalbn(-Inf, -1) = -inf scalbn(1, 1024) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised
See also
(C++11)(C++11) |
decomposes a number into significand and a power of 2 (function) |
(C++11)(C++11) |
multiplies a number by 2 raised to a power (function) |