std::assoc_laguerre, std::assoc_laguerref, std::assoc_laguerrel
double assoc_laguerre( unsigned int n, unsigned int m, double x ); double assoc_laguerre( unsigned int n, unsigned int m, float x ); |
(1) | |
double assoc_laguerre( unsigned int n, unsigned int m, IntegralType x ); |
(2) | |
As all special functions, assoc_laguerre
is only guaranteed to be available in <cmath>
if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Parameters
n | - | the degree of the polymonial, a value of unsigned integer type |
m | - | the order of the polynomial, a value of unsigned integer type |
x | - | the argument, a value of a floating-point or integral type |
Return value
If no errors occur, value of the associated Laguerre polynomial ofx
, that is (-1)mdm |
dxm |
n+m(x), is returned (where L
n+m(x) is the unassociated Laguerre polynomial, std::laguerre(n+m, x)).
Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
- If
x
is negative, a domain error may occur - If
n
orm
is greater or equal to 128, the behavior is implementation-defined.
Notes
Implementations that do not support TR 29124 but support TR 19768, provide this function in the header tr1/cmath
and namespace std::tr1
An implementation of this function is also available in boost.math
The associated Laguerre polynomials are the polynomial solutions of the equation xy,,
+(m+1-x)y,
+ny = 0
The first few are:
- assoc_laguerre(0, m, x) = 1
- assoc_laguerre(1, m, x) = -x + m + 1
- assoc_laguerre(2, m, x) =
[x21 2
-2(m+2)x+(m+1)(m+2)] - assoc_laguerre(3, m, x) =
[-x31 6
-3(m+3)x2
-3(m+2)(m+3)x+(m+1)(m+2)(m+3)]
Example
(works as shown with gcc 6.0)
#define __STDCPP_WANT_MATH_SPEC_FUNCS__ 1 #include <cmath> #include <iostream> double L1(unsigned m, double x) { return -x + m + 1; } double L2(unsigned m, double x) { return 0.5*(x*x-2*(m+2)*x+(m+1)*(m+2)); } int main() { // spot-checks std::cout << std::assoc_laguerre(1, 10, 0.5) << '=' << L1(10, 0.5) << '\n' << std::assoc_laguerre(2, 10, 0.5) << '=' << L2(10, 0.5) << '\n'; }
Output:
10.5=10.5 60.125=60.125
See also
Laguerre polynomials (function) |
External links
Weisstein, Eric W. "Associated Laguerre Polynomial." From MathWorld--A Wolfram Web Resource.