Standard library header <scoped_allocator>
From cppreference.com
This header is part of the dynamic memory management library.
Classes | |
(C++11) |
implements multi-level allocator for multi-level containers (class template) |
Functions | |
compares two scoped_allocator_adaptor instances (public member function of std::scoped_allocator_adaptor<OuterAlloc,InnerAlloc...> ) |
Synopsis
namespace std { template <class OuterAlloc, class... InnerAlloc> class scoped_allocator_adaptor; template <class OuterA1, class OuterA2, class... InnerAllocs> bool operator==(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a, const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b) noexcept; template <class OuterA1, class OuterA2, class... InnerAllocs> bool operator!=(const scoped_allocator_adaptor<OuterA1, InnerAllocs...>& a, const scoped_allocator_adaptor<OuterA2, InnerAllocs...>& b) noexcept; }
Class template std::scoped_allocator_adaptor
namespace std { template <class OuterAlloc, class... InnerAllocs> class scoped_allocator_adaptor : public OuterAlloc { private: using OuterTraits = allocator_traits<OuterAlloc>; // exposition only scoped_allocator_adaptor<InnerAllocs...> inner; // exposition only public: using outer_allocator_type = OuterAlloc; using inner_allocator_type = /* see definition */ ; using value_type = typename OuterTraits::value_type; using size_type = typename OuterTraits::size_type; using difference_type = typename OuterTraits::difference_type; using pointer = typename OuterTraits::pointer; using const_pointer = typename OuterTraits::const_pointer; using void_pointer = typename OuterTraits::void_pointer; using const_void_pointer = typename OuterTraits::const_void_pointer; using propagate_on_container_copy_assignment = /* see definition */ ; using propagate_on_container_move_assignment = /* see definition */ ; using propagate_on_container_swap = /* see definition */ ; using is_always_equal = /* see definition */ ; template <class Tp> struct rebind { using other = scoped_allocator_adaptor< OuterTraits::template rebind_alloc<Tp>, InnerAllocs...>; }; scoped_allocator_adaptor(); template <class OuterA2> scoped_allocator_adaptor(OuterA2&& outerAlloc, const InnerAllocs&... innerAllocs) noexcept; scoped_allocator_adaptor(const scoped_allocator_adaptor& other) noexcept; scoped_allocator_adaptor(scoped_allocator_adaptor&& other) noexcept; template <class OuterA2> scoped_allocator_adaptor(const scoped_allocator_adaptor< OuterA2, InnerAllocs...>& other) noexcept; template <class OuterA2> scoped_allocator_adaptor(scoped_allocator_adaptor< OuterA2, InnerAllocs...>&& other) noexcept; scoped_allocator_adaptor& operator=(const scoped_allocator_adaptor&) = default; scoped_allocator_adaptor& operator=(scoped_allocator_adaptor&&) = default; ~scoped_allocator_adaptor(); inner_allocator_type& inner_allocator() noexcept; const inner_allocator_type& inner_allocator() const noexcept; outer_allocator_type& outer_allocator() noexcept; const outer_allocator_type& outer_allocator() const noexcept; pointer allocate(size_type n); pointer allocate(size_type n, const_void_pointer hint); void deallocate(pointer p, size_type n); size_type max_size() const; template <class T, class... Args> void construct(T* p, Args&&... args); template <class T1, class T2, class... Args1, class... Args2> void construct(pair<T1, T2>* p, piecewise_construct_t, tuple<Args1...> x, tuple<Args2...> y); template <class T1, class T2> void construct(pair<T1, T2>* p); template <class T1, class T2, class U, class V> void construct(pair<T1, T2>* p, U&& x, V&& y); template <class T1, class T2, class U, class V> void construct(pair<T1, T2>* p, const pair<U, V>& x); template <class T1, class T2, class U, class V> void construct(pair<T1, T2>* p, pair<U, V>&& x); template <class T> void destroy(T* p); scoped_allocator_adaptor select_on_container_copy_construction() const; }; }